
Distributed System Abstractions for Multicores Systems

Frank Mueller
North Carolina State University

mueller@csc.ncsu.edu

ABSTRACT
Current trends in microprocessors are to steadily increasethe num-
ber of cores. While multicores offer tremendous opportunities to
meet processing demand, they come at the expense of limited scal-
ability due to on-chip (interconnect) and off-chip (memory) re-
source contention. As the core count increases, current system and
programming abstractions, such as pure task-level parallelism and
single-image operating systems, become an obstacle ratherthan an
aid in harnessing multicore power.
This work promotes a distributed system design, instead of the
traditional shared memory view on a chip. It utilize mesh-based
network-on-chip (NoC) communication. It provides a new abstrac-
tion layer of micro-kernels on few cores and pico-kernels onthe
vast majority of cores on a chip. This novel layer mitigates high-
level node parallelism and low-level shared memory. It has the po-
tential to be transparent to programmers but can also be explicitly
addressed for bare-metal performance.

1. INTRODUCTION
The future of computing is rapidly changing as multicore proces-
sors are becoming ubiquitous. While multicores offer tremendous
opportunities to meet processing demand, they come at the expense
of limited scalability due to on-chip (interconnect) and off-chip
(memory) resource contention.
Contemporary shared memory techniques have been shown to fall
short in scaling, particularly at the system level where a single
system image (SSI) remains the traditional abstraction. SSI was
a good match for bus-based multiprocessors in the past. How-
ever, bus-based designs do not scale well (even beyond four pro-
cessors) and have been replaced by mesh interconnects (e.g., Hy-
pertransport, Quick Path Interconnect) and, for high core counts,
tile-based architectures with 2D meshed network-on-chip (NoC)
interconnects [2, 3, 8, 7, 1].
Mesh-based systems with MESI-style (Modified/Exclusive/Shared/In-
valid) coherence protocols enhanced by coherence filters [6] may
limit scalability in in the number of cores. For example, themulti-
kernel (aka. Barrelfish) follows a distributed kernel paradigm that
employs messages in an off-chip mesh interconnect of Hypertrans-
port links [4]. It shows that messaging can outperform shared mem-
ory for configurations of just eight processors.

2. OPEN QUESTIONS
The hypothesis of this position paper is:On the path to exascale,
research is needed to develop novel system and program abstrac-
tions at the runtime and operating system layers that replace the
shared-memory SSI legacy with an asynchronous message-based,
decentralized and distributed system design, yet at small system
size suitable for per-core deployment.A pico kernel is envisioned
that handles task dispatching and on-chip communication oneach
core. These per-core pico kernels would be controlled by micro
kernels that govern the scheduling of tasks and coordinate higher-
level operating system abstractions (e.g., off-chip device access,
file systems). We seek to support a massive number of cores on
a single chip, which paves the path to scalable runtime/operating

systems for the future. We promote a set of novel system and
program abstractions at the runtime and operating system layers
that replaces the shared-memory SSI legacy with an asynchronous
message-based, decentralized and distributed system design, yet at
small system size suitable per-core deployment.
In the following, a high level description of the system design ob-
jectives and their relation to open questions in multicore research
is provided.
Ensure predictive execution that maximizes the use of all available
cores: An exascale core OS needs to combine low-cost scheduling
with predictable process execution to facilitate load balancing. The
following open problems need to be addressed: How does schedul-
ing in a massive multicore environment differ from traditional op-
erating system scheduling? How can concepts such as interrupts,
priority, swapping be implemented while ensuring predictive exe-
cution? How can resource contention be reduced, both for NoC
messages and off-chip traffic (memory, I/O)?
Guarantee scalability as the number of cores increases: Such an OS
has t o ensure that performance increases linearly with the num-
ber of cores as more cores are added (scale out). The following
open problems need to be addressed: What are the appropriate
metrics or measures of effectiveness to evaluate performance? Are
some measures biased towards specific applications (e.g., real-time
image processing)? How can the shared memory limitations that
plague some multicore systems be overcome? For example, does
the potential of message passing among core elements scale to mas-
sive numbers of cores? Can application performance scale ascore
counts increase and NoCs become subject to contention? How can
hardware routing be complemented by software re-routing tobetter
utilize the NoC?
Provide an environment for power-awareness: The exascale OS
needs to tackle the power consumption / leakage problems inher-
ent to multicore systems. The following open problems need to be
addressed: What is the interaction of scheduling with core activa-
tion? Is there any latency that needs to be accounted for? Arethere
tradeoffs between activating cores vs. attempting to maximize the
use of cores already activated? How many cores should be utilized
at a time to obtain an optimal energy-delay trade-off?
Develop runtime/operating systems abstractions for processors with
massive numbers of cores: The envisioned exascale OS is designed
as a “natural” fit with multicore systems, to be synergistic with, and
complement them. This is as opposed to the current state of the art
where operating systems are derived from legacies that werenever
initially designed from the ground up to accommodate high degrees
of parallelism among tens or hundreds of processors or cores. The
following open problems need to be addressed: What traditional
operating system services are applicable to multicores (e.g. pipes,
threads, mutexes, interrupts, signals, etc.)? How can theybe tai-
lored for multicore support, while maximizing the use of allthe
cores? How do language abstractions support such OS mechanisms
for massive multi-cores?
Our vision is a system where featherweight layers of parallelism
are scalably coordinated in a distributed manner to provideclose to
raw performance while ensuring predictability.



3. EXPERIMENTAL RESULTS

3.1 Microenchmarks
We have conducted experiments to assess the trade-offs between
message passing and shared memory of a 64-core NoC (Tilera TilePro64)
[3], which has multiple mesh networks (on chip). In a bandwidth
micro-benchmark, we measured the transfer time in cycles for dif-
ferent data sizes. We compared message passing over the userdy-
namic network (UDN) with shared memory transfers over the co-
herence interconnect. Figure 1 indicates that shared memory incurs
roughly twice the cost of message passing transfers (both without
hashing). UDN messages follow a one-sided push model (sender
initiated) while shared memory accesses are pull based (receiver
initiated) and require at least two messages for a single transfer.
The differences between shared memory and message passing be-
come even more significant as the distance (hop count) between
cores in the NoC increases and as NoC contention increases.These
results indicate that message passing has the potential to outper-
form shared memory transfers and that the former has superior
scaling characteristics than the latter.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 4  6  8  10 12 14 16 18 20 22 24 26 28 30 32

C
y
c
le

s

Processors

Shared Memory
Message Passing

Figure 1: Increase in Shared Memory Contention/Jitter

The figure also indicates a significant increase in jitter (variability)
for shared memory access latencies as the number cores and thus
contention increases. These results are further supportedby the in-
crease in memory latencies caused by contention to shared memory
of Figure 2. In a shared-memory system design, both the operat-
ing system and the application increasingly suffer from such laten-
cies as the core count increases.Due to these findings, we promote
a system design that breaks with the shared memory abstraction.
While this is our primary philosophy, we would still allow shared
memory abstractions for smaller ensembles of cores when perfor-
mance and predictability allow to do so (for up to 16 cores).

�

�����

�����

�����

�����

�����

�����

�����

�����

� �� �� ��

�
�
��
�
�

���	�
�����
��

�	 ��	 ���	

Figure 2: Shared Memory Latency for Contention Levels

�����

�����

�����

�����

�����

�����

�����

�
�
��
�
�


���

��������

�����

�

����

�����

�����

�����

� � �� �� �� ��� ��� ���

�

���	�
�����
����
����

��

Figure 3: Message Latency for Different Protocols

3.2 NAS IS
We have implemented a parallel bucket sort algorithm (derived from
the NAS IS benchmark) on the Tilera TilePro 64 over (a) shared
memory and (b) message passing utilizing the vendor’s interrupt-
based approach. Figure 4 depicts the performance results (in bil-
lions on cycles) over an increasing number of cores (4-56). This is
a weak scaling experiment [5] where the number of keys per core
is fixed at a certain size. This ensures that the computational work
per core remains the same as the number of cores cooperating in a
parallel sort is increased. We measure the performance for per-core
sizes of 2k, 4k 8k and 16k keys to ensure that all keys fit into the
local L2 cache after a warm-up phase. The expected result of weak
scaling under perfect scalability would be a flat line.

���

���

���

���

���

���

����

��
�
�
�

�
��
��
�

�
�
�
��
�
��
��
�
�
��

�
�� ���������

��������

��������

��������

���������

��������

��������

��������

�

���

���

���

���

� � �� �� �� �� �� �� �� �� �� �� �� ��

�
��
��
�
�
��
�
�
�

�
�

���	�
����
������
�

Figure 4: Performance of Bucket Sort for Different Problem
Sizes

We make the following observations: (1) Shared memory inflicts
overheads up to 50 times higher than message passing, especially
for a small number of cores. This is due to the coherence proposal
overhead and the latencies over the distributed L2, which causes
frequent messages. (2) As the core count increases, overheads of
message passing increase quadratically. This shows that the sort-
ing algorithm is communication bound. The quadratic growthis
due to increasing contention over the 2D mesh interconnect.(In
a 3D mesh, the increase would be cubical.) (3) As the core count
increases, overheads of shared memory vary erratically dueto NoC
contention. The variance for shared-memory results over all core
sizes is in the same order as the difference between 4 and 56 cores
for message passing, albeit without any erratic variance for the lat-
ter. By correlating these results with the vendor’s acknowledgment-
based message passing to our polling-based approach (Figure 3),
we conjecture that communication performance can be improved
up to 16 times for the parallelized bucket sort. Furthermore, by re-
ducing contention over the NoC, our approach can result in superior
scaling, i.e., a reduction from a quadratic overhead to a logarithmic
one depending on the NoC overlay structure.



4. REFERENCES
[1] Single-chip cloud computer.

blogs.intel.com/research/2009/12/sccloudcomp.php.
[2] Tera-scale research prototype: Connecting 80 simple sores on

a single test chip.
ftp://download.intel.com/research/platform/terascale/tera-
scaleresearchprototypebackgrounder.pdf.

[3] Tilera processor family.
http://www.tilera.com/products/processors.php.

[4] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim
Harris, Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian
Schüpbach, and Akhilesh Singhania. The multikernel: a new
os architecture for scalable multicore systems. InProceedings
of the ACM SIGOPS 22nd symposium on Operating systems
principles, Symposium on Operating Systems Principles,
pages 29–44, 2009.

[5] John L. Gustafson. Reevaluating Amdahl’s law.
Communications of the ACM, 31(5):532–533, May 1988.

[6] Andreas Moshovos, Gokhan Memik, Alok Choudhary, and
Babak Falsafi. Jetty: Filtering snoops for reduced energy
consumption in smp servers. InInternational Symposium on
High Performance Computer Architecture, pages 85–96, 2001.

[7] K. Sankaralingam, R. Nagarajan, P. Gratz, R. Desikan,
D. Gulati, H. Hanson, C. Kim, H. Liu, N. Ranganathan,
S. Sethumadhavan, S. Sharif, P. Shivakumar, W. Yoder,
R. McDonald, S.W. Keckler, and D.C. Burger. The distributed
microarchitecture of the trips prototype processor. In
International Symposium on Microarchitecture, November
2006.

[8] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei
Bao, Bruce Edwards, Carl Ramey, Matthew Mattina,
Chyi-Chang Miao, John F. Brown III, and Anant Agarwal.
On-chip interconnection architecture of the tile processor.
IEEE Micro, 27:15–31, 2007.


